Ingresa un problema...
Matemática discreta Ejemplos
,
Paso 1
Paso 1.1
Suma a ambos lados de la ecuación.
Paso 1.2
Divide cada término en por y simplifica.
Paso 1.2.1
Divide cada término en por .
Paso 1.2.2
Simplifica el lado izquierdo.
Paso 1.2.2.1
Cancela el factor común de .
Paso 1.2.2.1.1
Cancela el factor común.
Paso 1.2.2.1.2
Divide por .
Paso 1.2.3
Simplifica el lado derecho.
Paso 1.2.3.1
Simplifica cada término.
Paso 1.2.3.1.1
Divide por .
Paso 1.2.3.1.2
Cancela el factor común de y .
Paso 1.2.3.1.2.1
Factoriza de .
Paso 1.2.3.1.2.2
Cancela los factores comunes.
Paso 1.2.3.1.2.2.1
Factoriza de .
Paso 1.2.3.1.2.2.2
Cancela el factor común.
Paso 1.2.3.1.2.2.3
Reescribe la expresión.
Paso 1.2.3.1.2.2.4
Divide por .
Paso 1.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 1.4
Factoriza de .
Paso 1.4.1
Factoriza de .
Paso 1.4.2
Factoriza de .
Paso 1.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 1.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 1.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 1.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 2
Paso 2.1
Reemplaza todos los casos de por en cada ecuación.
Paso 2.1.1
Reemplaza todos los casos de en por .
Paso 2.1.2
Simplifica el lado izquierdo.
Paso 2.1.2.1
Simplifica .
Paso 2.1.2.1.1
Simplifica cada término.
Paso 2.1.2.1.1.1
Reescribe como .
Paso 2.1.2.1.1.1.1
Usa para reescribir como .
Paso 2.1.2.1.1.1.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.1.2.1.1.1.3
Combina y .
Paso 2.1.2.1.1.1.4
Cancela el factor común de .
Paso 2.1.2.1.1.1.4.1
Cancela el factor común.
Paso 2.1.2.1.1.1.4.2
Reescribe la expresión.
Paso 2.1.2.1.1.1.5
Simplifica.
Paso 2.1.2.1.1.2
Aplica la propiedad distributiva.
Paso 2.1.2.1.1.3
Multiplica por .
Paso 2.1.2.1.1.4
Aplica la propiedad distributiva.
Paso 2.1.2.1.1.5
Multiplica por .
Paso 2.1.2.1.1.6
Multiplica por .
Paso 2.1.2.1.2
Suma y .
Paso 2.2
Resuelve en .
Paso 2.2.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 2.2.1.1
Resta de ambos lados de la ecuación.
Paso 2.2.1.2
Resta de .
Paso 2.2.2
Divide cada término en por y simplifica.
Paso 2.2.2.1
Divide cada término en por .
Paso 2.2.2.2
Simplifica el lado izquierdo.
Paso 2.2.2.2.1
Cancela el factor común de .
Paso 2.2.2.2.1.1
Cancela el factor común.
Paso 2.2.2.2.1.2
Divide por .
Paso 2.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 2.2.4
Simplifica .
Paso 2.2.4.1
Reescribe como .
Paso 2.2.4.2
Simplifica el numerador.
Paso 2.2.4.2.1
Reescribe como .
Paso 2.2.4.2.1.1
Factoriza de .
Paso 2.2.4.2.1.2
Reescribe como .
Paso 2.2.4.2.2
Retira los términos de abajo del radical.
Paso 2.2.4.3
Multiplica por .
Paso 2.2.4.4
Combina y simplifica el denominador.
Paso 2.2.4.4.1
Multiplica por .
Paso 2.2.4.4.2
Eleva a la potencia de .
Paso 2.2.4.4.3
Eleva a la potencia de .
Paso 2.2.4.4.4
Usa la regla de la potencia para combinar exponentes.
Paso 2.2.4.4.5
Suma y .
Paso 2.2.4.4.6
Reescribe como .
Paso 2.2.4.4.6.1
Usa para reescribir como .
Paso 2.2.4.4.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.2.4.4.6.3
Combina y .
Paso 2.2.4.4.6.4
Cancela el factor común de .
Paso 2.2.4.4.6.4.1
Cancela el factor común.
Paso 2.2.4.4.6.4.2
Reescribe la expresión.
Paso 2.2.4.4.6.5
Evalúa el exponente.
Paso 2.2.4.5
Simplifica el numerador.
Paso 2.2.4.5.1
Combina con la regla del producto para radicales.
Paso 2.2.4.5.2
Multiplica por .
Paso 2.2.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 2.2.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 2.2.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 2.2.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 2.3
Reemplaza todos los casos de por en cada ecuación.
Paso 2.3.1
Reemplaza todos los casos de en por .
Paso 2.3.2
Simplifica el lado derecho.
Paso 2.3.2.1
Simplifica .
Paso 2.3.2.1.1
Usa la regla de la potencia para distribuir el exponente.
Paso 2.3.2.1.1.1
Aplica la regla del producto a .
Paso 2.3.2.1.1.2
Aplica la regla del producto a .
Paso 2.3.2.1.2
Simplifica el numerador.
Paso 2.3.2.1.2.1
Eleva a la potencia de .
Paso 2.3.2.1.2.2
Reescribe como .
Paso 2.3.2.1.2.2.1
Usa para reescribir como .
Paso 2.3.2.1.2.2.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.3.2.1.2.2.3
Combina y .
Paso 2.3.2.1.2.2.4
Cancela el factor común de .
Paso 2.3.2.1.2.2.4.1
Cancela el factor común.
Paso 2.3.2.1.2.2.4.2
Reescribe la expresión.
Paso 2.3.2.1.2.2.5
Evalúa el exponente.
Paso 2.3.2.1.3
Reduce la expresión mediante la cancelación de los factores comunes.
Paso 2.3.2.1.3.1
Eleva a la potencia de .
Paso 2.3.2.1.3.2
Multiplica por .
Paso 2.3.2.1.3.3
Cancela el factor común de y .
Paso 2.3.2.1.3.3.1
Factoriza de .
Paso 2.3.2.1.3.3.2
Cancela los factores comunes.
Paso 2.3.2.1.3.3.2.1
Factoriza de .
Paso 2.3.2.1.3.3.2.2
Cancela el factor común.
Paso 2.3.2.1.3.3.2.3
Reescribe la expresión.
Paso 2.3.2.1.4
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.3.2.1.5
Combina y .
Paso 2.3.2.1.6
Combina los numeradores sobre el denominador común.
Paso 2.3.2.1.7
Simplifica el numerador.
Paso 2.3.2.1.7.1
Multiplica por .
Paso 2.3.2.1.7.2
Suma y .
Paso 2.3.2.1.8
Combina y .
Paso 2.3.2.1.9
Multiplica por .
Paso 2.3.2.1.10
Reescribe como .
Paso 2.3.2.1.11
Simplifica el numerador.
Paso 2.3.2.1.11.1
Reescribe como .
Paso 2.3.2.1.11.1.1
Factoriza de .
Paso 2.3.2.1.11.1.2
Reescribe como .
Paso 2.3.2.1.11.2
Retira los términos de abajo del radical.
Paso 2.3.2.1.12
Multiplica por .
Paso 2.3.2.1.13
Combina y simplifica el denominador.
Paso 2.3.2.1.13.1
Multiplica por .
Paso 2.3.2.1.13.2
Eleva a la potencia de .
Paso 2.3.2.1.13.3
Eleva a la potencia de .
Paso 2.3.2.1.13.4
Usa la regla de la potencia para combinar exponentes.
Paso 2.3.2.1.13.5
Suma y .
Paso 2.3.2.1.13.6
Reescribe como .
Paso 2.3.2.1.13.6.1
Usa para reescribir como .
Paso 2.3.2.1.13.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.3.2.1.13.6.3
Combina y .
Paso 2.3.2.1.13.6.4
Cancela el factor común de .
Paso 2.3.2.1.13.6.4.1
Cancela el factor común.
Paso 2.3.2.1.13.6.4.2
Reescribe la expresión.
Paso 2.3.2.1.13.6.5
Evalúa el exponente.
Paso 2.3.2.1.14
Simplifica el numerador.
Paso 2.3.2.1.14.1
Combina con la regla del producto para radicales.
Paso 2.3.2.1.14.2
Multiplica por .
Paso 2.4
Reemplaza todos los casos de por en cada ecuación.
Paso 2.4.1
Reemplaza todos los casos de en por .
Paso 2.4.2
Simplifica el lado derecho.
Paso 2.4.2.1
Simplifica .
Paso 2.4.2.1.1
Usa la regla de la potencia para distribuir el exponente.
Paso 2.4.2.1.1.1
Aplica la regla del producto a .
Paso 2.4.2.1.1.2
Aplica la regla del producto a .
Paso 2.4.2.1.1.3
Aplica la regla del producto a .
Paso 2.4.2.1.2
Simplifica la expresión.
Paso 2.4.2.1.2.1
Eleva a la potencia de .
Paso 2.4.2.1.2.2
Multiplica por .
Paso 2.4.2.1.3
Simplifica el numerador.
Paso 2.4.2.1.3.1
Eleva a la potencia de .
Paso 2.4.2.1.3.2
Reescribe como .
Paso 2.4.2.1.3.2.1
Usa para reescribir como .
Paso 2.4.2.1.3.2.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.4.2.1.3.2.3
Combina y .
Paso 2.4.2.1.3.2.4
Cancela el factor común de .
Paso 2.4.2.1.3.2.4.1
Cancela el factor común.
Paso 2.4.2.1.3.2.4.2
Reescribe la expresión.
Paso 2.4.2.1.3.2.5
Evalúa el exponente.
Paso 2.4.2.1.4
Reduce la expresión mediante la cancelación de los factores comunes.
Paso 2.4.2.1.4.1
Eleva a la potencia de .
Paso 2.4.2.1.4.2
Multiplica por .
Paso 2.4.2.1.4.3
Cancela el factor común de y .
Paso 2.4.2.1.4.3.1
Factoriza de .
Paso 2.4.2.1.4.3.2
Cancela los factores comunes.
Paso 2.4.2.1.4.3.2.1
Factoriza de .
Paso 2.4.2.1.4.3.2.2
Cancela el factor común.
Paso 2.4.2.1.4.3.2.3
Reescribe la expresión.
Paso 2.4.2.1.5
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.4.2.1.6
Combina y .
Paso 2.4.2.1.7
Combina los numeradores sobre el denominador común.
Paso 2.4.2.1.8
Simplifica el numerador.
Paso 2.4.2.1.8.1
Multiplica por .
Paso 2.4.2.1.8.2
Suma y .
Paso 2.4.2.1.9
Combina y .
Paso 2.4.2.1.10
Multiplica por .
Paso 2.4.2.1.11
Reescribe como .
Paso 2.4.2.1.12
Simplifica el numerador.
Paso 2.4.2.1.12.1
Reescribe como .
Paso 2.4.2.1.12.1.1
Factoriza de .
Paso 2.4.2.1.12.1.2
Reescribe como .
Paso 2.4.2.1.12.2
Retira los términos de abajo del radical.
Paso 2.4.2.1.13
Multiplica por .
Paso 2.4.2.1.14
Combina y simplifica el denominador.
Paso 2.4.2.1.14.1
Multiplica por .
Paso 2.4.2.1.14.2
Eleva a la potencia de .
Paso 2.4.2.1.14.3
Eleva a la potencia de .
Paso 2.4.2.1.14.4
Usa la regla de la potencia para combinar exponentes.
Paso 2.4.2.1.14.5
Suma y .
Paso 2.4.2.1.14.6
Reescribe como .
Paso 2.4.2.1.14.6.1
Usa para reescribir como .
Paso 2.4.2.1.14.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.4.2.1.14.6.3
Combina y .
Paso 2.4.2.1.14.6.4
Cancela el factor común de .
Paso 2.4.2.1.14.6.4.1
Cancela el factor común.
Paso 2.4.2.1.14.6.4.2
Reescribe la expresión.
Paso 2.4.2.1.14.6.5
Evalúa el exponente.
Paso 2.4.2.1.15
Simplifica el numerador.
Paso 2.4.2.1.15.1
Combina con la regla del producto para radicales.
Paso 2.4.2.1.15.2
Multiplica por .
Paso 3
Paso 3.1
Reemplaza todos los casos de por en cada ecuación.
Paso 3.1.1
Reemplaza todos los casos de en por .
Paso 3.1.2
Simplifica el lado izquierdo.
Paso 3.1.2.1
Simplifica .
Paso 3.1.2.1.1
Simplifica cada término.
Paso 3.1.2.1.1.1
Aplica la regla del producto a .
Paso 3.1.2.1.1.2
Eleva a la potencia de .
Paso 3.1.2.1.1.3
Multiplica por .
Paso 3.1.2.1.1.4
Reescribe como .
Paso 3.1.2.1.1.4.1
Usa para reescribir como .
Paso 3.1.2.1.1.4.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.1.2.1.1.4.3
Combina y .
Paso 3.1.2.1.1.4.4
Cancela el factor común de .
Paso 3.1.2.1.1.4.4.1
Cancela el factor común.
Paso 3.1.2.1.1.4.4.2
Reescribe la expresión.
Paso 3.1.2.1.1.4.5
Simplifica.
Paso 3.1.2.1.1.5
Aplica la propiedad distributiva.
Paso 3.1.2.1.1.6
Multiplica por .
Paso 3.1.2.1.1.7
Aplica la propiedad distributiva.
Paso 3.1.2.1.1.8
Multiplica por .
Paso 3.1.2.1.1.9
Multiplica por .
Paso 3.1.2.1.2
Suma y .
Paso 3.2
Resuelve en .
Paso 3.2.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Paso 3.2.1.1
Resta de ambos lados de la ecuación.
Paso 3.2.1.2
Resta de .
Paso 3.2.2
Divide cada término en por y simplifica.
Paso 3.2.2.1
Divide cada término en por .
Paso 3.2.2.2
Simplifica el lado izquierdo.
Paso 3.2.2.2.1
Cancela el factor común de .
Paso 3.2.2.2.1.1
Cancela el factor común.
Paso 3.2.2.2.1.2
Divide por .
Paso 3.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 3.2.4
Simplifica .
Paso 3.2.4.1
Reescribe como .
Paso 3.2.4.2
Simplifica el numerador.
Paso 3.2.4.2.1
Reescribe como .
Paso 3.2.4.2.1.1
Factoriza de .
Paso 3.2.4.2.1.2
Reescribe como .
Paso 3.2.4.2.2
Retira los términos de abajo del radical.
Paso 3.2.4.3
Multiplica por .
Paso 3.2.4.4
Combina y simplifica el denominador.
Paso 3.2.4.4.1
Multiplica por .
Paso 3.2.4.4.2
Eleva a la potencia de .
Paso 3.2.4.4.3
Eleva a la potencia de .
Paso 3.2.4.4.4
Usa la regla de la potencia para combinar exponentes.
Paso 3.2.4.4.5
Suma y .
Paso 3.2.4.4.6
Reescribe como .
Paso 3.2.4.4.6.1
Usa para reescribir como .
Paso 3.2.4.4.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.2.4.4.6.3
Combina y .
Paso 3.2.4.4.6.4
Cancela el factor común de .
Paso 3.2.4.4.6.4.1
Cancela el factor común.
Paso 3.2.4.4.6.4.2
Reescribe la expresión.
Paso 3.2.4.4.6.5
Evalúa el exponente.
Paso 3.2.4.5
Simplifica el numerador.
Paso 3.2.4.5.1
Combina con la regla del producto para radicales.
Paso 3.2.4.5.2
Multiplica por .
Paso 3.2.5
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.2.5.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.2.5.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.2.5.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.3
Reemplaza todos los casos de por en cada ecuación.
Paso 3.3.1
Reemplaza todos los casos de en por .
Paso 3.3.2
Simplifica el lado derecho.
Paso 3.3.2.1
Simplifica .
Paso 3.3.2.1.1
Usa la regla de la potencia para distribuir el exponente.
Paso 3.3.2.1.1.1
Aplica la regla del producto a .
Paso 3.3.2.1.1.2
Aplica la regla del producto a .
Paso 3.3.2.1.2
Simplifica el numerador.
Paso 3.3.2.1.2.1
Eleva a la potencia de .
Paso 3.3.2.1.2.2
Reescribe como .
Paso 3.3.2.1.2.2.1
Usa para reescribir como .
Paso 3.3.2.1.2.2.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.3.2.1.2.2.3
Combina y .
Paso 3.3.2.1.2.2.4
Cancela el factor común de .
Paso 3.3.2.1.2.2.4.1
Cancela el factor común.
Paso 3.3.2.1.2.2.4.2
Reescribe la expresión.
Paso 3.3.2.1.2.2.5
Evalúa el exponente.
Paso 3.3.2.1.3
Reduce la expresión mediante la cancelación de los factores comunes.
Paso 3.3.2.1.3.1
Eleva a la potencia de .
Paso 3.3.2.1.3.2
Multiplica por .
Paso 3.3.2.1.3.3
Cancela el factor común de y .
Paso 3.3.2.1.3.3.1
Factoriza de .
Paso 3.3.2.1.3.3.2
Cancela los factores comunes.
Paso 3.3.2.1.3.3.2.1
Factoriza de .
Paso 3.3.2.1.3.3.2.2
Cancela el factor común.
Paso 3.3.2.1.3.3.2.3
Reescribe la expresión.
Paso 3.3.2.1.4
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.3.2.1.5
Combina y .
Paso 3.3.2.1.6
Combina los numeradores sobre el denominador común.
Paso 3.3.2.1.7
Simplifica el numerador.
Paso 3.3.2.1.7.1
Multiplica por .
Paso 3.3.2.1.7.2
Suma y .
Paso 3.3.2.1.8
Combina y .
Paso 3.3.2.1.9
Multiplica por .
Paso 3.3.2.1.10
Reescribe como .
Paso 3.3.2.1.11
Simplifica el numerador.
Paso 3.3.2.1.11.1
Reescribe como .
Paso 3.3.2.1.11.1.1
Factoriza de .
Paso 3.3.2.1.11.1.2
Reescribe como .
Paso 3.3.2.1.11.2
Retira los términos de abajo del radical.
Paso 3.3.2.1.12
Multiplica por .
Paso 3.3.2.1.13
Combina y simplifica el denominador.
Paso 3.3.2.1.13.1
Multiplica por .
Paso 3.3.2.1.13.2
Eleva a la potencia de .
Paso 3.3.2.1.13.3
Eleva a la potencia de .
Paso 3.3.2.1.13.4
Usa la regla de la potencia para combinar exponentes.
Paso 3.3.2.1.13.5
Suma y .
Paso 3.3.2.1.13.6
Reescribe como .
Paso 3.3.2.1.13.6.1
Usa para reescribir como .
Paso 3.3.2.1.13.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.3.2.1.13.6.3
Combina y .
Paso 3.3.2.1.13.6.4
Cancela el factor común de .
Paso 3.3.2.1.13.6.4.1
Cancela el factor común.
Paso 3.3.2.1.13.6.4.2
Reescribe la expresión.
Paso 3.3.2.1.13.6.5
Evalúa el exponente.
Paso 3.3.2.1.14
Simplifica el numerador.
Paso 3.3.2.1.14.1
Combina con la regla del producto para radicales.
Paso 3.3.2.1.14.2
Multiplica por .
Paso 3.4
Reemplaza todos los casos de por en cada ecuación.
Paso 3.4.1
Reemplaza todos los casos de en por .
Paso 3.4.2
Simplifica el lado derecho.
Paso 3.4.2.1
Simplifica .
Paso 3.4.2.1.1
Usa la regla de la potencia para distribuir el exponente.
Paso 3.4.2.1.1.1
Aplica la regla del producto a .
Paso 3.4.2.1.1.2
Aplica la regla del producto a .
Paso 3.4.2.1.1.3
Aplica la regla del producto a .
Paso 3.4.2.1.2
Simplifica la expresión.
Paso 3.4.2.1.2.1
Eleva a la potencia de .
Paso 3.4.2.1.2.2
Multiplica por .
Paso 3.4.2.1.3
Simplifica el numerador.
Paso 3.4.2.1.3.1
Eleva a la potencia de .
Paso 3.4.2.1.3.2
Reescribe como .
Paso 3.4.2.1.3.2.1
Usa para reescribir como .
Paso 3.4.2.1.3.2.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.4.2.1.3.2.3
Combina y .
Paso 3.4.2.1.3.2.4
Cancela el factor común de .
Paso 3.4.2.1.3.2.4.1
Cancela el factor común.
Paso 3.4.2.1.3.2.4.2
Reescribe la expresión.
Paso 3.4.2.1.3.2.5
Evalúa el exponente.
Paso 3.4.2.1.4
Reduce la expresión mediante la cancelación de los factores comunes.
Paso 3.4.2.1.4.1
Eleva a la potencia de .
Paso 3.4.2.1.4.2
Multiplica por .
Paso 3.4.2.1.4.3
Cancela el factor común de y .
Paso 3.4.2.1.4.3.1
Factoriza de .
Paso 3.4.2.1.4.3.2
Cancela los factores comunes.
Paso 3.4.2.1.4.3.2.1
Factoriza de .
Paso 3.4.2.1.4.3.2.2
Cancela el factor común.
Paso 3.4.2.1.4.3.2.3
Reescribe la expresión.
Paso 3.4.2.1.5
Para escribir como una fracción con un denominador común, multiplica por .
Paso 3.4.2.1.6
Combina y .
Paso 3.4.2.1.7
Combina los numeradores sobre el denominador común.
Paso 3.4.2.1.8
Simplifica el numerador.
Paso 3.4.2.1.8.1
Multiplica por .
Paso 3.4.2.1.8.2
Suma y .
Paso 3.4.2.1.9
Combina y .
Paso 3.4.2.1.10
Multiplica por .
Paso 3.4.2.1.11
Reescribe como .
Paso 3.4.2.1.12
Simplifica el numerador.
Paso 3.4.2.1.12.1
Reescribe como .
Paso 3.4.2.1.12.1.1
Factoriza de .
Paso 3.4.2.1.12.1.2
Reescribe como .
Paso 3.4.2.1.12.2
Retira los términos de abajo del radical.
Paso 3.4.2.1.13
Multiplica por .
Paso 3.4.2.1.14
Combina y simplifica el denominador.
Paso 3.4.2.1.14.1
Multiplica por .
Paso 3.4.2.1.14.2
Eleva a la potencia de .
Paso 3.4.2.1.14.3
Eleva a la potencia de .
Paso 3.4.2.1.14.4
Usa la regla de la potencia para combinar exponentes.
Paso 3.4.2.1.14.5
Suma y .
Paso 3.4.2.1.14.6
Reescribe como .
Paso 3.4.2.1.14.6.1
Usa para reescribir como .
Paso 3.4.2.1.14.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 3.4.2.1.14.6.3
Combina y .
Paso 3.4.2.1.14.6.4
Cancela el factor común de .
Paso 3.4.2.1.14.6.4.1
Cancela el factor común.
Paso 3.4.2.1.14.6.4.2
Reescribe la expresión.
Paso 3.4.2.1.14.6.5
Evalúa el exponente.
Paso 3.4.2.1.15
Simplifica el numerador.
Paso 3.4.2.1.15.1
Combina con la regla del producto para radicales.
Paso 3.4.2.1.15.2
Multiplica por .
Paso 4
La solución del sistema es el conjunto completo de pares ordenados que son soluciones válidas.
Paso 5
El resultado puede mostrarse de distintas formas.
Forma de punto:
Forma de la ecuación:
Paso 6